

Conceitos Iniciais de Estatística — Módulo 4: GENERALIDADES SOBRE ESTATÍSTICA DESCRITIVA Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA:

► GENERALIDADES SOBRE ESTATÍSTICA DESCRITIVA

CURSO: ADMINISTRAÇÃO

 $\underline{PERÍODO}:4^{\circ}$

1) <u>ESTATÍSTICA DESCRITIVA & ESTATÍSTICA INFERENCIAL</u>:

Como sabemos, a Estatística é a ciência que lida com dados; então ela envolve a coleta desses dados, a classificação, a sumarização, a organização, a análise e a interpretação desses dados. Nesse mister, a Estatística tem duas frentes básicas de abordagem: Descrição e Inferência.

1.1) <u>A Estatística Descritiva</u> é a frente de abordagem que cuida da organização, da sumarização e da descrição de um conjunto de dados. Fazem parte desse conjunto de procedimentos o cálculo de medidas de posição e de dispersão, a construção de tabelas e a construção de gráficos.

Exemplo Ilustrativo 1: Considere uma coleta de dados realizada numa classe de 50 alunos, cujo objetivo foi o levantamento do número de pessoas do grupo familiar de cada um desses indivíduos. O entrevistador, depois das entrevistas, saiu com a seguinte planilha de dados:

2	5	2	2	6
3	4	6	3	1
4	6	3	3	6
4	4	1	5	3
6	6	3	5	4
1	1	4	4	3
5	5	2	3	6
3	1	4	4	5
5	4	3	6	4
2	2	5	3	6

Como esses dados, desagrupados como se apresentam, têm pouca expressão objetiva, o pesquisador resolveu tabulá-los com as medidas legendadas a seguir:

 $f_i \rightarrow$ frequência absoluta $x_i \rightarrow$ cada uma das variáveis (número de pessoas de cada grupo familiar)

 $f_r \rightarrow$ frequência relativa $F_b \rightarrow$ frequência acumulada para baixo

 $F_c \rightarrow$ frequência acumulada para cima $F_{br} \rightarrow$ frequência relativa acumulada para baixo

 $F_{cr} \rightarrow$ frequência relativa acumulada para cima $\Delta x \rightarrow$ desvio em relação à média = $|x_i -$ média |

 $d_M \to Desvio \ m\'edio \qquad S^2 \to Variância \qquad S \to Desvio \ Padrão \qquad C_V \to Coeficiente \ de \ variação$

Xi	$\mathbf{f_i}$	$f_i \cdot x_i$	f _r (%)	$\mathbf{F_b}$	F _{br} (%)	$\mathbf{F_c}$	F _{cr} (%)	Δχ	$f_i \cdot \Delta x_i$	$f_i \cdot \Delta x_i^2$
1	5	5	10	5	10	50	100	2,76	13,8	38,09
2	6	12	12	11	22	45	90	1,76	10,56	18,59
3	11	33	22	22	44	39	78	0,76	8,36	6,35
4	11	44	22	33	66	28	56	2,24	24,62	55,19
5	8	40	16	41	82	17	34	1,24	9,92	12,30
6	9	54	18	50	100	9	18	2,24	20,16	45,16
TOTAL	50	188	100						87,44	175,68

► Medidas de Posição (tendência central):

a) Média =
$$\frac{\sum f_i.x_i}{\sum f_i} = \frac{188}{50} = 3,76.$$

- **b)** Moda = 3 ou 4 pessoas (bimodal).
- c) Mediana = 4 pessoas.

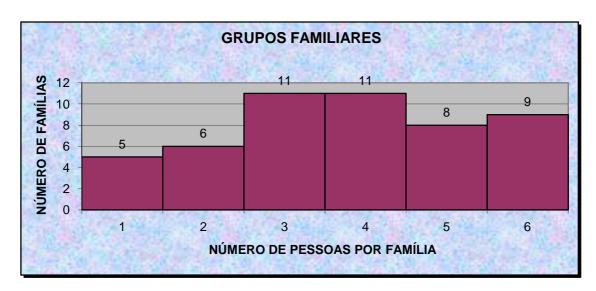
► Medidas de dispersão

a)
$$\mathbf{d_M} = \frac{\sum f_i . \Delta x_i}{\sum f_i} = \frac{87,44}{50} = 1,75.$$

b)
$$\mathbf{S}^2 = \frac{\sum f_i . \Delta x_i^2}{\sum f_i - 1} = \frac{175,68}{50 - 1} = 3,59.$$

c) **S** =
$$\sqrt{S^2}$$
 = $\sqrt{3,59}$ = 1,9.

► Representação Gráfica (Histograma):



Todos os procedimentos gerados a partir da planilha primitiva, frequências, medidas e gráfico ilustram a abordagem da Estatística Descritiva.

1.2) <u>A Estatística Inferencial</u> cuida dos métodos que tornam possível estudar as características de uma população com base em uma amostra dessa população. Seu objetivo de ponta é estabelecer condições de confiabilidade de inferências sobre atributos de uma população através de um processo de amostragem. Para isso, a Teoria das Probabilidades provê e regula a possibilidade de acerto, de modo que os resultados obtidos com uma amostra reflitam, de fato, os resultados característicos da população.

Exemplo Ilustrativo 2: Numa pesquisa sobre o processo eleitoral no Brasil, os institutos encarregados dessa tarefa nunca entrevistam todos os eleitores da região onde ocorre a pesquisa, ou seja, não é toda a população que é entrevistada, mas uma amostra criteriosamente escolhida dessa população. Com base nas respostas dessa amostra, os resultados são entendidos a toda população, depois de análise criteriosa e metódica, em que as probabilidades de cada candidato são verificadas, inclusive com margens de erros determinadas.

2) COMPLEMENTOS PARA A ESTATÍSTICA DESCRITIVA:

2.1) <u>Sobre as Medidas de Posição - Separatrizes</u> :

A determinação da Mediana de uma série de variáveis implica no estabelecimento de uma variável que ocupa a posição central, quando essas variáveis estão ordenadas, e, consequentemente, divide o grupo de variáveis em dois subgrupos: o subgrupo das variáveis menores ou iguais à mediana e o subgrupo das variáveis maiores ou iguais à Mediana.

Exemplo Ilustrativo 3: As idades das 11 moças que trabalham em uma repartição pública são dadas pela tabela:

Ī	18	25	19	22	27	20	19	22	20	30	29

Ordenando crescentemente essas idades, tem-se: 18 - 19 - 19 - 20 - 20 - 22 - 22 - 25 - 27 - 29 - 30, em que 22 ocupa a posição central e separa os subgrupos 18 - 19 - 19 - 20 - 20 (menores ou iguais a 22) e 22-25-27-29-30 (maiores ou iguais a 22). A mediana é 22.

De modo análogo, uma série de variáveis pode ser dividida em 4 subgrupos (Quartis), 10 subgrupos (Decis) ou 100 subgrupos (Percentis).

2.1.1) Quartis : A série de variáveis fica assim dividida :

$$\rightarrow \text{F\'ormula para determinar o } 1^{\underline{o}} \text{ quartil: } Q_1 = \lambda_1 \ + \frac{\left(\frac{n}{4} - \sum F_{b,ant}\right) h}{f_1}$$

$$\rightarrow$$
 Fórmula para determinar o 3º quartil: $Q_3 = \lambda_3 + \frac{\left(\frac{3n}{4} - \sum F_{b.ant}\right) h}{f_3}$

Exemplo Ilustrativo 4: A distribuição abaixo registra as idades de 56 pessoas de uma grande família. Determine todos os quartis dessa distribuição.

IDADES (anos)	fi	\mathbf{F}_{bi}
[7, 17[6	6
[17, 27[15	21
[27, 37[20	41
[37, 47[10	51
[47,57[5	56
$\Sigma \rightarrow$	56	

 1°) Como n=56 variáveis, tem-se que $\frac{n}{4}=\frac{56}{4}=14^{\circ}$ termo \Rightarrow Na coluna de F_{bi} identificamos a classe Q_1 , ou seja, a classe em que $F_{bi} \geq 14$. Então, tem-se a 2° classe: $\lambda_1=17$;

 2°) Como n = 56 variáveis, tem-se que $\frac{n}{2} = \frac{56}{2} = 28^{\circ}$ termo \Rightarrow Na coluna de F_{bi} identificamos a classe Q_2 , ou seja, a classe em que $F_{bi} \ge 28$. Então, tem-se a 3° classe: $\lambda_2 = 27$;

 $3^{\underline{o}}$) Como n = 56 variáveis, tem-se que $\frac{3n}{4} = \frac{3.56}{4} = 42^{\underline{o}} \Rightarrow$ Na coluna de F_{bi} identificamos a classe Q_3 , ou seja, a classe em que $F_{bi} \geq 42$. Então, tem-se a $4^{\underline{a}}$ classe: $\lambda_3 = 37$;

Aplicando-se as fórmulas, tem-se:

$$\rightarrow$$
 Q₁ = 17 + $\left(\frac{14-6}{15}\right)$.10 = 22,33

$$\rightarrow$$
 Q₂ = 27 + $\left(\frac{28-21}{20}\right)$.10 = 30,5

$$\rightarrow Q_3 = 37 + \left(\frac{42 - 41}{10}\right).10 = 38$$

Então, podemos afirmar que:

25% das variáveis observadas estão entre 7 anos e 22,33 anos;

25% das variáveis observadas estão entre 22,33 anos e 30,5 anos;

25% das variáveis observadas estão entre 30,5 anos e 38 anos;

25% das variáveis observadas estão entre 38 anos e 57 anos;

2.1.2) <u>Decis</u> : A série de variáveis fica dividida em 10 subgrupos de 10% em 10%. Cada decil é calculado de modo análogo aos quartis, pela fórmula:

$$D_{i} = \lambda_{i} + \frac{\left(\frac{in}{10} - \sum F_{b.ant}\right).h}{f_{i}}$$

2.1.3) Percentis: A série de variáveis fica dividida em 100 subgrupos de 1% em 1%. Cada Percentil é calculado de modo análogo aos decis, pela fórmula:

$$P_{i} = \lambda_{i} + \frac{\left(\frac{in}{100} - \sum F_{b,ant}\right) h}{f_{i}}$$

Exemplo Ilustrativo 5: Determinar o 4° decil e o 72° percentil da distribuição abaixo. A distribuição registra o número de gools de 40 artilheiros internacionais.

Nº DE GOOLS	f _i	\mathbf{F}_{bi}
[4,9[8	8
[9, 14[12	20
[14, 19[17	37
[19, 24[3	40
$\Sigma \rightarrow$	40	

$$\text{Sabe-se que n} = 40 \Rightarrow \begin{cases} \frac{\text{in}}{10} = \frac{4.40}{10} = 16 \ \Rightarrow \lambda_4 = 9 \ , \ F_{\text{b.ant}} = 8 \ e \ h = 5 \\ \frac{\text{in}}{100} = \frac{72.40}{100} = 28.8 \Rightarrow \lambda_{100} = 14 \ , F_{\text{b.ant}} = 20 \ e \ h = 5 \end{cases}$$

Então,
$$D_4 = 9 + \frac{(16-8).5}{12} = 12,33$$
 e $P_{72} = 14 + \frac{(28,8-20).5}{17} = 16,59$

<u>OBS</u>: A Mediana sempre está entre os limites λ e L da classe mediana, enquanto $\frac{\sum f_i}{2}$ está entre $F_{b.ant}$ e

$$F_{b.post} \text{ . Numa regra de três, pode-se escrever que } \frac{Md - \lambda}{L - \lambda} = \frac{\sum f_i}{2} - F_{b.ant}, \text{ em que } L - \lambda = h \text{ e}$$

$$F_{b} - F_{b,ant} = f_{i} \quad . \quad Dai, \quad tem-se \quad (Md - \lambda). \quad f_{i} = \left(\frac{\sum f_{i}}{2} - F_{b,ant}\right). \quad \Rightarrow (Md - \lambda) = \frac{\left(\frac{\sum f_{i}}{2} - F_{b,ant}\right). \quad }{f_{i}} \quad que \quad será \quad a$$

$$formula \qquad Md = \lambda + \frac{\left(\frac{\sum f_i}{2} - F_{b,ant}\right) h}{f_i}$$

Exercício Proposto:

Em cada série de variáveis apresentadas a seguir, determine o que se pede.

a) A mediana, os quartis e o sexto decil das notas de Estatística de 35 alunos, dadas no quadro a seguir:

6	6	7	8	8	8
9	10	10	11	12	13
14	14	15	16	16	17
18	19	20	21	22	22
23	24	25	26	27	28
29	29	30	31	32	

b) A mediana, os quartis, 0 terceiro decil e o vigésimo percentil das massas, em kg, de 180 pacientes de uma clínica:

MASSAS	N ^O DE PACIENTES	F _b
30	40	40
40	32	72
50	35	107
60	24	131
70	20	151
80	29	180
TOTAL →	180	

c) A mediana, os quartis, o sétimo decil e o octogésimo percentil dos salários de 22 funcionários de uma empresa:

i	SALÁRIOS	$\mathbf{f_i}$	$\mathbf{f_b}$
1	300 - 320	4	
2	320 - 340	3	
3	340 - 360	5	
4	360 - 380	8	
5	380 -400	2	
	TOTAL →	$\sum f_i = 22$	

d) A mediana, os quartis, o quarto decil e o trigésimo percentil do número de jogos realizados por 45 jogadores profissionais:

i	JC	OGOS	$\mathbf{f_i}$	$\mathbf{f_b}$
1	125		8	
2	175	— 225	6	
3	225		9	
4	275		7	
5	325		9	
6	375		6	
	TOTA	L→	$\sum f_i = 45$	

e) A mediana, os quartis, o nono decil e o sexagésimo quinto percentil das contribuições de 121 empregados ao INSS, assim distribuídos por classe: $[54,74[\rightarrow12,[74,94[\rightarrow11,[94,114[\rightarrow11,[114,134[\rightarrow13,[134,154[\rightarrow16,[154,174[\rightarrow19,[174,194[\rightarrow21e[194,214[\rightarrow18.$

2.2) Sobre as Medidas de Dispersão:

2.2.1) <u>Sobre a Variância amostral</u>: A variância S² é, genericamente, a soma dos quadrados dos desvios das variáveis, em relação à média dessas variáveis, dividida pelo número de variáveis, para variáveis não agrupadas, ou seja,

$$S^2 = \frac{\sum (x_i - \overline{x})^2}{n}$$

Nessa fórmula, pode-se desenvolver o somatório $\sum (x_i - \overline{x})^2$ como $\sum (x_i^2 + \overline{x}^2 - 2x_i \overline{x}) = \sum x_i^2 + n \overline{x}^2$ -

$$-2\overline{x}\sum x_{i} = \sum x_{i}^{2} + n\left(\frac{\sum x_{i}}{n}\right)^{2} - \frac{2(\sum x_{i})(\sum x_{i})}{n} = \sum x_{i}^{2} + \frac{n\sum x_{i}^{2}}{n^{2}} - \frac{2\sum x_{i}^{2}}{n} = \sum x_{i}^{2} - \frac{\sum x_{i}^{2}}{n}.$$

. Então, tem-se $S^2 = \frac{1}{n} \left[\sum x_i^2 - \frac{\sum x_i^2}{n} \right]$ para variáveis não agrupadas. Para variáveis agrupadas, basta

acrescentar o fator relativo à frequência absoluta, ou seja,

$$S^{2} = \frac{\sum f_{i}.(x_{i} - \overline{x})^{2}}{n} = \frac{1}{n} \left[\sum f_{i}.x_{i}^{2} - \frac{\sum f_{i}.x_{i}^{2}}{n} \right]$$

Lembre-se que $n = \sum f_i$

2.2.2) Sobre o Desvio Padrão : Como o desvio padrão é a raiz quadrada da variância, temos então:

$$S = \sqrt{\frac{\sum f_{i}.(x_{i} - \overline{x})^{2}}{n}} = \sqrt{\frac{1}{n} \left[\sum f_{i}.x_{i}^{2} - \frac{\sum f_{i}.x_{i}^{2}}{n}\right]}$$

Observação Importante: No desenvolvimento anterior da fórmula da variância, a última etapa, que foi $S^2 = \sum x_i^2 - \frac{\sum x_i^2}{n}$ pode ser escrita como $S^2 = \frac{(n-1)\sum x_i^2}{n}$ para variáveis não agrupadas. Essa expressão implica que o desvio padrão é $S = \sqrt{\frac{(n-1)}{n}\sum x_i^2}$; isso parece razoável quando as variáveis são representativas da população e não da amostra. Por isso, aplica-se a correção de Bessel, que considera o denominador n-1 no lugar de n. Então, tem-se:

	VARIÂNCIA	DESVIO PADRÃO
POPULAÇÃO	$S^{2} = \frac{1}{n} \left[\sum_{i} x_{i}^{2} \cdot f_{i} - \frac{(\sum_{i} x_{i} \cdot f_{i})^{2}}{n} \right]$	$S = \sqrt{\frac{1}{n} \left[\sum_{i} x_{i}^{2} . f_{i} - \frac{(\sum_{i} x_{i} . f_{i})^{2}}{n} \right]}$
AMOSTRA	$S^{2} = \frac{1}{n-1} \left[\sum_{i} x_{i}^{2} . f_{i} - \frac{(\sum_{i} x_{i} . f_{i})^{2}}{n} \right]$	$S = \sqrt{\frac{1}{n-1} \left[\sum_{i} x_{i}^{2} . f_{i} - \frac{(\sum_{i} x_{i} . f_{i})^{2}}{n} \right]}$

2.2.3) Interpretação do Desvio Padrão:

a) Regra Empírica: Veja a tabela abaixo, considerando uma distribuição amostral com média \bar{x} e desvio padrão S.

INTERVALO	CONTEUDO DO INTERVALO	DISTRIBUIÇÕES APROX. SIMÉTRICAS	DISTRIBUIÇÕES FORT. SIMÉTRICAS
	Entre 60% e 80% de todas	70% de todas as	90% de todas as
$\overline{x} \pm S$	as variáveis amostrais	variáveis amostrais	variáveis amostrais

INTERVALO	CONTEUDO DO INTERVALO PARA DISTRIBUIÇÕE SIMÉT.	CONTEÚDO P/ DIST. COM ASSIMETRIA EL.
$\overline{x} \pm 2S$	95% de todas as variáveis amostrais	100% de todas as variáveis amostrais

INTERVALO	CONTEUDO DO INTERVALO PARA DISTRIBUIÇÕE SIMÉT.
$\overline{x} \pm 3S$	100% de todas as variáveis amostrais

b) <u>Teorema de Tchebycheff</u>:

Para qualquer distribuição amostral com média \bar{x} e desvio padrão S:

- ightharpoonup O intervalo $\bar{x} \pm 2S$ contém, no mínimo, 75% de todas as variáveis amostrais.
- \triangleright O intervalo $\overline{x} \pm 3S$ contém, no mínimo, 89% de todas as variáveis amostrais.

Exemplo Ilustrativo 6: Calcular a variância e o desvio padrão do número de gools de 40 jogadores de futebol profissional ao longo de um mesmo período. Interpretar depois o desvio padrão da distribuição pelas duas regras anteriores.

Nº DE GOOLS	$\mathbf{f_i}$	Xi	f _i .x _M	$x_M^2.f_i$
[4,9[8	6,5	52	338
[9, 14[12	11,5	138	1.587
[14, 19[17	16,5	280,5	4.628,25
[19, 24[3	21,5	64,5	1.386,75
$\Sigma \rightarrow$	40		535	7.940,00

1º) A média amostral será $\frac{535}{40} = 13,38$ gols.

$$2^{\circ}$$
) A variância será $S^2 = \frac{1}{39} \left[7.940 - \frac{(535)^2}{40} \right] = 20,11 \Rightarrow \text{desvio padrão} \Rightarrow S = 4,48 \text{ gols.}$

$$3^{\circ}$$
) $\overline{x} \pm S = 13,38 \pm 4,48 = (8,9; 17,86)$ \Rightarrow entre 9 e 18 gols há 29 jogadores \Rightarrow 29/40 = 72,5% $\overline{x} \pm 2S = 13,38 \pm 8,96 = (4,42; 22,34)$ \Rightarrow entre 4 e 22 gols há 37 jogadores \Rightarrow 37/40 = 92,5% $\overline{x} \pm 3S = 13,38 \pm 13,44 = (-0,06; 26,82)$ \Rightarrow entre 0 e 26 gols há 40 jogadores \Rightarrow 100% Os resultados confirmam o critérios empírico e de Tchebycheff.

Exercício Proposto:

Calcular a variância e o desvio padrão de cada série de dados a seguir. Interpretar depois o desvio padrão da distribuição pelas duas regras anteriores.

a) Notas de Estatística de 35 alunos:

6	6	7	8	8	8
9	10	10	11	12	13
14	14	15	16	16	17
18	19	20	21	22	22
23	24	25	26	27	28
29	29	30	31	32	

b) Massas, em kg, de 180 pacientes de uma clínica:

MASSAS	N ^O DE PACIENTES	f _i .x _i	$x_i^2.f_i$
30	40		
40	32		
50	35		
60	24		
70	20		
80	29		
TOTAL →	180		

c) Salários de 22 funcionários de uma empresa:

i	SALÁRIOS	$\mathbf{f_i}$	f _i .x _i	$x_i^2.f_i$
1	300 - 320	4		
2	320 - 340	3		
3	340 - 360	5		
4	360 - 380	8		
5	380 -400	2		
	TOTAL →	$\sum f_i = 22$		

d) Número de jogos realizados por 45 jogadores profissionais:

i	JOGOS	$\mathbf{f_i}$	f _i .x _i	$x_i^2.f_i$
1	125 — 175	8		
2	175 — 225	6		
3	225 - 275	9		
4	275 - 325	7		
5	325 - 375	9		
6	375 — 425	6		
	TOTAL →	$\sum f_i = 45$		

e) Contribuições de 121 empregados ao INSS, assim distribuídos por classe: [54 , 74[\rightarrow 12, [74 , 94[\rightarrow 11, [94 , 114[\rightarrow 11, [114 , 134[\rightarrow 13 , [134 , 154[\rightarrow 16 , [154 , 174[\rightarrow 19 , [174 , 194[\rightarrow 21 e [194 , 214[\rightarrow 18.

2.3) Sobre as Medidas de Assimetria e Curtose :

2.3.1) <u>Assimetria</u>: Uma distribuição é simétrica quando coincidem a *média*, *a moda* e a *mediana*. Então, a assimetria acontece quando há divergência entre essas medidas. Considerando a média \bar{x} , a moda Mo e a mediana Md, tem-se:

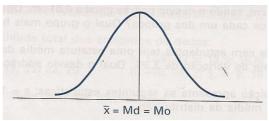
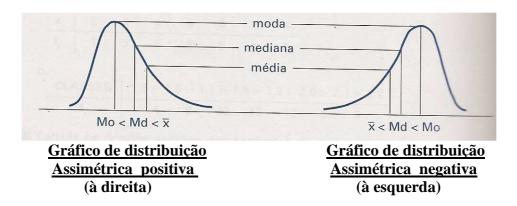


Gráfico de distribuição simétrica



Com base nessas relações entre a média e a moda, pode-se, com a diferença $\Delta M = \overline{x} - Mo$, determinar o tipo de assimetria:

► Se
$$\Delta M = 0 \Rightarrow D$$
. Simétrica

► Se $\Delta M < 0 \Rightarrow$ Assimetria negativa

► Se $\Delta M > 0 \Rightarrow$ Assimetria positiva

Exemplo Ilustrativo 7: Sejam as distribuições D_1 , D_2 e D_3 , dadas a seguir:

DISTRIBUIÇÃO D₁

IDADES (anos)	$\mathbf{f_i}$
[2,6[6
[6, 10[12
[10, 14[24
[14, 18[12
[18, 22[6
$\Sigma \rightarrow$	60

$$\rightarrow \overline{x} = 12 \text{ anos}$$
 $\rightarrow \text{MD} = 12 \text{ anos}$
 $\rightarrow \text{Moda} = 12 \text{ anos}$
 $\rightarrow \Delta M = 12 - 12 = 0 \Rightarrow SIMÉTRICA$

DISTRIBUIÇÃO D₂

IDADES (anos)	$\mathbf{f_i}$
[2,6[6
[6, 10[12
[10, 14[24
[14, 18[30
[18, 22[6
$\Sigma \rightarrow$	78

$$\rightarrow \overline{x} = 12.9$$
 anos

$$\rightarrow$$
 MD = 13,5 anos

$$\rightarrow$$
 Moda = 16 anos

DISTRIBUIÇÃO D₃

IDADES (anos)	fi
[2,6[6
[6, 10[30
[10, 14[24
[14, 18[12
[18, 22[6
$\Sigma \rightarrow$	78

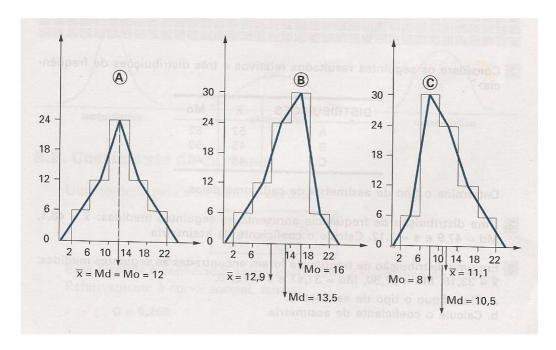
$$\rightarrow \overline{x} = 11,1 \text{ anos}$$

$$\rightarrow$$
 MD = 10,5 anos

$$\rightarrow$$
 Moda = 8 anos

$$\rightarrow$$
 Δ M = 11,1 – 8 = 3,1 anos \Rightarrow ASSIMÉTRICA POSITIVA

Vejamos os gráficos dessas distribuições :



2.3.1.1) coeficiente de Assimetria de Pearson:

$$\mathbf{As} = \frac{3(\overline{\mathbf{x}} - \mathbf{Md})}{\mathbf{S}}$$

Se $0.15 < |As| < 1 \Rightarrow$ ASSIMETRIA MODERADA. Se $|As| > 1 \Rightarrow$ ASSIMETRIA FORTE.

Exemplo Ilustrativo 8: Para as distribuições anteriores, tem-se: $S(D_1) = 4,42$, $S(D_2) = 4,20$ e $S(D_1) = 4,20$. Então, os coeficientes de assimetria serão:

►
$$D_1$$
 ► As = $\frac{3(12-12)}{4,42} = 0 \Rightarrow$ SIMÉTRIA

►
$$D_2$$
 ► $As = \frac{3(12,9-13,5)}{4,20} = -0,420 \Rightarrow ASSIMÉTRIA NEGATIVA$
► D_3 ► $As = \frac{3(11,1-10,5)}{4,20} = 0,429 \Rightarrow ASSIMÉTRIA POSITIVA$

►
$$D_3$$
 ► $As = \frac{3(11,1-10,5)}{4,20} = 0,429 \Rightarrow ASSIMÉTRIA POSITIVA$

Exercício proposto: Avalie a assimetria de cada distribuição a seguir, usando os dois métodos abordados.

a) Notas de Estatística de 35 alunos:

6	6	7	8	8	8
9	10	10	11	12	13
14	14	15	16	16	17
18	19	20	21	22	22
23	24	25	26	27	28
29	29	30	31	32	

b) Massas, em kg, de 180 pacientes de uma clínica:

MASSAS	N ^O DE PACIENTES	f_{i} . x_{i}	$x_i^2.f_i$
30	40		
40	32		
50	35		
60	24		
70	20		
80	29		
$TOTAL \rightarrow$	180		

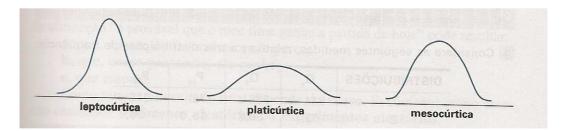
c) Salários de 22 funcionários de uma empresa:

i	SALÁRIOS	$\mathbf{f_i}$	Xi	f_{i} . x_{i}	$x_i^2.f_i$	$\mathbf{f_{bi}}$
1	300 320	4				
2	320 - 340	3				
3	340 - 360	5				
4	360 - 380	8				
5	380 -400	2				
	TOTAL →	$\sum f_i = 22$				

d) Número de jogos realizados por 45 jogadores profissionais:

i	JOGOS	$\mathbf{f_i}$	Xi	$f_{i}.x_{i}$	$x_i^2.f_i$	f_{bi}
1	125 — 175	8				
2	175 — 225	6				
3	225 — 275	9				
4	275 -325	7				
5	325 - 375	9				
6	375 — 425	6				
$\mathbf{TOTAL} \rightarrow$		$\sum f_i = 45$				

- e) Contribuições de 121 empregados ao INSS, assim distribuídos por classe: [54 , 74[\rightarrow 12, [74 , 94[\rightarrow 11, [94 , 114[\rightarrow 11, [114 , 134[\rightarrow 13 , [134 , 154[\rightarrow 16 , [154 , 174[\rightarrow 19 , [174 , 194[\rightarrow 21 e [194 , 214[\rightarrow 18.
- **2.3.2**) <u>Curtose</u>: É o grau de achatamento da curva de uma distribuição em relação a uma distribuição padrão, chamada de **curva normal** ou **mesocúrtica**. A curva mais estreita que a normal recebe o nome de **leptocúrtica** e a mais aberta que a normal é a **platicúrtica**.



2.3.2.1) Coeficiente de Curtose :

$$C = \frac{Q_3 - Q_1}{2(P_{90} - P_{10})}$$

Em que C é o **coeficiente percentílico de curtose** (para a curva normal, C = 0,263); Q_1 e Q_3 são quartis, P_{10} e P_{90} são percentis. Ainda temos que:

- → Para a curva leptocúrtica, C < 0,263 e
- \rightarrow Para a curva platicúrtica, C > 0,263.

Exemplo Ilustrativo 9: Para a distribuição abaixo, calcule o grau de curtose e classifique a curva em relação à normal. Determine também o tipo de assimetria dessa curva.

IDADES (anos)	$\mathbf{f}_{\mathbf{i}}$	Xi	$\mathbf{F}_{\mathbf{bi}}$	$f_{i}.x_{i}$	$\mathbf{x_i}^2.\mathbf{f_i}$
[7, 17[6	12	6	72	864
[17, 27[15	22	21	330	7.260
[27, 37[20	32	41	640	20.480
[37, 47[10	42	51	420	17.640
[47,57[5	52	56	260	13.520
$\Sigma \rightarrow$	56			1.722	59.764

$$\rightarrow \overline{x} = \frac{1.722}{56} = 30,75$$
 anos.

$$\rightarrow$$
 Mo = 27 + $\frac{5.10}{5+10}$ = 30,33 anos.

$$\rightarrow$$
 Md = 27 + $\frac{(28-21).10}{20}$ = 30,5 anos.

$$\rightarrow S^2 = \frac{1}{55} \left[59.764 - \frac{(1.722)^2}{56} \right] = 123,86 \Rightarrow S = \sqrt{123.86} = 11,13 \text{ anos.}$$

$$\rightarrow$$
 Quartil 1: $\left\{\frac{n}{4} = 14, \ \lambda_1 = 17, F_{i.ant} = 6 \ e \ f_1 = 15 \Rightarrow Q_1 = 17 + \frac{(14-6).10}{15} = 22,33 \ anos \right\}$

$$\rightarrow \text{Quartil 3}: \\ \left\{ \frac{3n}{4} = 42 \text{ , } \lambda_3 = 37 \text{ , } \\ F_{\text{i.ant}} = 41 \text{ e } f_3 = 10 \\ \Rightarrow Q_3 = 37 + \frac{(42-41).10}{10} = 38 \text{ anos } \right.$$

$$\rightarrow$$
 Percentil 10 : $\begin{cases} \frac{in}{100} = 5.6, \ \lambda_{10} = 7, F_{i.ant} = 0 \ e \ f_{10} = 6 \Rightarrow P_{10} = 7 + \frac{(5.6 - 0).10}{6} = 16.33 \ anos \end{cases}$

$$\rightarrow \text{Percentil 90}: \\ \begin{cases} \frac{\text{in}}{100} = 50,4 \text{ , } \\ \lambda_{10} = 37 \text{ , } \\ F_{\text{i.ant}} = 41 \text{ e } \\ f_{10} = 10 \\ \Rightarrow P_{90} = 37 + \frac{(50,4-41).10}{10} = 46,4 \text{ anos } \\ f_{10} = 10 \\ \Rightarrow P_{90} = 37 + \frac{(50,4-41).10}{10} = 46,4 \text{ anos } \\ f_{10} = 10 \\ \Rightarrow P_{90} = 37 + \frac{(50,4-41).10}{10} = 46,4 \text{ anos } \\ f_{10} = 10 \\ \Rightarrow P_{90} = 37 + \frac{(50,4-41).10}{10} = 46,4 \text{ anos } \\ f_{10} = 10 \\ \Rightarrow P_{90} = 37 + \frac{(50,4-41).10}{10} = 46,4 \text{ anos } \\ f_{10} = 10 \\ \Rightarrow P_{90} = 37 + \frac{(50,4-41).10}{10} = 46,4 \text{ anos } \\ f_{10} = 10 \\ \Rightarrow P_{90} = 37 + \frac{(50,4-41).10}{10} = 46,4 \text{ anos } \\ f_{10} = 10 \\ \Rightarrow P_{90} = 37 + \frac{(50,4-41).10}{10} = 46,4 \text{ anos } \\ f_{10} = 10 \\ \Rightarrow P_{90} = 37 + \frac{(50,4-41).10}{10} = 46,4 \text{ anos } \\ f_{10} = 10 \\ \Rightarrow P_{10} = 1$$

$$\rightarrow$$
 As = $\frac{3.(30,75 - 30,5)}{11.13} = 0,0673$ e Δ M = 30,75 - 30,33 = 0,42 \Rightarrow Leve assimetria à direita, quase

simétrica.

$$\rightarrow$$
 C = $\frac{(38 - 22,33)}{2(46,4 - 16,33)} = \frac{15,67}{60,14} = 0,261 \Rightarrow$ Curva leptocúrtica, quase normal.

Exemplo de Reciclagem do módulo 4:

O número $\frac{1+\sqrt{5}}{2}$, aproximadamente igual a 1,618, é conhecido como *Número de ouro*, pois, segundo a

concepção do classicismo grego, tem sua origem na divisão de um todo em duas partes, tais que a menor caiba na maior o mesmo número de vezes que esta caiba no todo. Constata-se a presença deste número na morfologia dos seres vivos. Um exemplo disso é a razão entre o comprimento total das duas primeiras falanges de um dedo humano e o comprimento da terceira falange do mesmo dedo. Um professor resolveu usar a sua turma de 42 alunos como amostra. Para fazer a coleta de dados, ele mediu os dedos de todos da turma e calculou a razão entre as falanges. Os resultados das proporções constatadas estão ordenadas na tabela abaixo:

1,25	1,27	1,28	1,28	1,29	1,30	1,32
1,33	1,33	1,35	1,36	1,36	1,37	1,38
1,38	1,38	1,39	1,40	1,42	1,44	1,44
1,47	1,52	1,54	1,57	1,62	1,63	1,63
1,63	1,64	1,64	1,64	1,65	1,65	1,66
1,66	1,67	1,68	1,68	1,69	1,71	1,72

Construir uma distribuição com classes que possibilite determinar a média dessas variáveis, sua moda, sua mediana, sua variância, seu desvio padrão, seu coeficiente de variação, sua medida e tipo de assimetria, sua medida de curtose e o tipo de curva gerada pela distribuição.

Resolução:

A tabulação desses dados, em forma de distribuição com classes, ficou assim:

i	RAZÂO	\mathbf{f}_1	$\mathbf{x_{M}}$	$\mathbf{f_{i}}.\mathbf{x_{M}}$	$(\mathbf{x_M} - \bar{\mathbf{x}})^2$	$f_i \cdot (x_M - \bar{x})^2$	$\mathbf{F_b}$
1	[1,25;1,33[7	1,29	9,03	0,04	0,28	7
2	[1,33 ; 1,41[11	1,37	15,07	0,0144	0,1584	18
3	[1,41;1,49[4	1,45	5,80	0,0016	0,0064	22
4	[1,49; 1,57[2	1,53	3,06	0,0016	0,0032	24
5	[1,57; 1,65[8	1,61	12,88	0,0144	0,1152	32
6	[1,65; 1,73[10	1,69	16,90	0,04	0,40	42
	$TOTAIS \rightarrow$	42		62,74		0,9632	

Então, teremos:

$$I^{\underline{o}}$$
) $\bar{x} = \frac{\sum f_{i,x_{M}}}{\sum f_{i}} = \frac{62,74}{42} = 1,49.$

$$2^{\underline{o}}$$
) $s^2 = \frac{0.9632}{41} = 0.023 \implies s = 0.15$.

- 3^{o}) O intervalo $\bar{x} \pm s \in 1,34 \le x_i \le 1,64$ e contém 23 dos 42 dados, ou seja, 54,76% da amostra; O intervalo $\bar{\mathbf{x}} \pm 2\mathbf{s}$ é 1,19 $\leq x_i \leq 1$,79 e contém os 42 dados, ou seja, 100% da amostra.
- 4°) A moda da distribuição é $Mo = 1.33 + \frac{4.(0.08)}{4+7} = 1.36$.
- $5^{\underline{0}}$) A mediana da distribuição será $Md = 1,41 + \frac{(21-18).0,08}{4} = 1,47$.
- 5°)O coeficiente de variação será $C_V = \frac{0.15}{1.49} \times 100\% = 10.1\%$.
- $7^{\underline{o}}$) Quanto à assimetria do histograma, temos
 - \rightarrow Pela diferença $\Delta M = \bar{x} Mo = 1,49$ -1,36 = 0,13 \Rightarrow Assimetria à direita.
 - \rightarrow Pelo coeficiente de assimetria de Pearson: $As = \frac{3(\overline{x} Md)}{S} = \frac{3.(1,49 1,47)}{0,15} = 0,4 \Rightarrow Assimetria à$ direita (leve assimetria).
- $8^{\underline{o}}$) Quanto à medida de curtose, teremos:

a)
$$Q_1 = 1.33 + \frac{(10.5 - 7).0.08}{11} = 1.35$$
 e $Q_3 = 1.57 + \frac{(31.5 - 24).0.08}{9} = 1.65$

a)
$$Q_1 = 1.33 + \frac{(10.5 - 7).0.08}{11} = 1.35$$
 e $Q_3 = 1.57 + \frac{(31.5 - 24).0.08}{8} = 1.65$
b) $P_{10} = 1.25 + \frac{(4.2 - 0).0.08}{7} = 1.34$ e $P_{90} = 1.65 + \frac{(37.8 - 32).0.08}{10} = 1.70$

c) Pelo coeficiente de curtose
$$C = \frac{Q_3 - Q_1}{2(P_{00} - P_{10})} = \frac{1,65 - 1,35}{2(1,70 - 1,34)} = 0,42 \Rightarrow curva platicúrtica.$$

Exercício proposto: Para cada distribuição do Exercício proposto da página 9, verifique a assimetria pelos dois processos estudados e classifique a curva quanto à curtose.